Bend-Imitating Theory and Electron Scattering in Sharply-bent Quantum Nanowires

Author:

Vakhnenko O.O.

Abstract

The concept of bend-imitating description as applied to the one-electron quantum mechanics in sharply-bent ideal electron waveguides and its development into a self-consistent theory are presented. In general, the theory allows one to model each particular circular-like bend of a continuous quantum wire as some specific multichannel scatterer being point-like in the longitudinal direction. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting one to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable to the analytical investigation of spectral and transport properties related to the ideal sharply-bent 3D wire-like structures of fixed cross-section and is adaptable to the 2D wire-like structures, as well as to the wire-like structures in the magnetic field perpendicular to the wire bending plane. In the framework of bend-imitating approach, the investigation of the electron scattering in a doubly-bent 2D quantum wire with S-like bend has been made, and the explicit dependences of the transmission and reflection coefficients on geometrical parameters of a structure, as well as on the electron energy, have been obtained. The total elimination of the mixing between the scattering channels of a S-like bent quantum wire is predicted.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3