Induced Vacuum Energy Density of Quantum Charged Scalar Matter in the Background of an Impenetrable Magnetic Tube with the Neumann Boundary Condition

Author:

Gorkavenko V.M.,Gorkavenko T.V.,Sitenko Yu.A.,Tsarenkova M.S.

Abstract

We consider the vacuum polarization of a charged scalar matter field outside the tube with magnetic flux inside. The tube is impenetrable for quantum matter, and the perfectly rigid (Neumann) boundary condition is imposed at its surface. We write expressions for the induced vacuum energy density for the case of a space with arbitrary dimension and for an arbitrary value of the magnetic flux. We do the numerical computation for the case of a half-integer flux value in the London flux units and the (2 + 1)-dimensional space-time. We show that the induced vacuum energy of the charged scalar matter field is induced, if the Compton wavelength of the matter field exceeds the transverse size of the tube considerably. We show that the vacuum energy is periodic in the value of the magnetic flux of the tube, providing a quantumfield-theoretical manifestation of the Aharonov–Bohm effect. The dependencies of the induced vacuum energy upon the distance from the center of the tube for different values of its thickness are obtained. The results are compared to those obtained earlier in the case of the perfectly reflecting (Dirichlet) boundary condition. It is shown that the value of the induced vacuum energy density in the case of the Neumann boundary condition is greater than in the case of the Dirichlet boundary condition.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3