Physical and chemical factors influencing the porosity of apatite-biopolymer composites

Author:

Sukhodub L. F., ,Sukhodub L. B.,Kumeda M. O., ,

Abstract

The undamaged structure and functionality of the skeleton are a prerequisite for ensuring the quality of human life. The introduction of the latest treatment methods and prosthetics in traumatic surgery, oncology, cranial surgery, and dentistry form a demand for biomaterials with functionalized properties. The growth of new bone tissue is a cell-regulated process based on creating a specific bone morphology, which combines the organic matrix and its inorganic content. The inorganic component of human bones and teeth is calcium deficiency hydroxyapatite (cdHA), with a molar ratio of Ca/P ranging from 1.5 to 1.67. The combination of cdHA and natural polymers in the material allows the incorporation of proteins and growth factors into the polymer matrix. It promotes biocompatibility and the growth of new bone tissue. This review considers the critical role of the porosity parameter of biomaterials (BM) in their use for bone regeneration. Porosity is an essential characteristic of BM and guarantees the interaction of the material with cells in bone formation, promoting vascularization and the process of biosorption of synthetic graft when it is replaced by newly formed native bone. At the same time, the degree of porosity should correlate with mechanical stability to maintain the structural integrity of BM in the process of hard tissue regeneration. Processes involving cells and proteins during BM implantation with both high (70–80 %) and low (≤ 45 %) degrees of porosity are considered. Data on existing methods of obtaining BM in porous scaffolds are given. The specified degree of porosity is provided by chemical (cross-linking) and physical (sublimation) methods. The effects of pores of different sizes and shapes on bone formation and vascularization are considered. It is shown that porosity is an influential factor influencing the mechanical properties of scaffolds, in particular, the stiffness of BM - a parameter that affects the proliferation of osteoblasts by regulating cell adhesion in the scaffold structure. The influence of the biopolymer component (Sodium Alginate - AN) on the porosity and swelling of hybrid apatite-biopolymer (HA/AN) composites, in which nanometric needle crystallites represent HA, is analyzed in detail.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3