Dielectric function and the absorption cross-section of the metal-graphene nanocylinders of the finite length

Author:

Karandas Ya. V., ,Korotun A. V.,

Abstract

The behavior of the diagonal components of the dielectric tensor and the behavior of the absorption cross-section in the different frequency ranges for the composite cylindrical nanostructures “metallic core – graphene shell” have been studied. In order to obtain the calculation formulas one uses the relations for the longitudinal and transverse components of the dielectric tensors for metallic core and graphene shell, which are determined by Drude model and Cubo model correspondingly. The consideration is carried out in the frameworks of “equivalent” elongated spheroid approach, according to which the defining dimensional parameter is effective aspect ratio, calculated from the condition of the equality of the corresponding axial inertia moments for two-layer cylinder and the “equivalent” elongated spheroid. The numerical results have been obtained for the nanocylinders with the cores of different metals, different radius and with the different number of graphene layers. The variation of amplitude and the variation of the location of extremes of the real and imaginary parts of the transverse component of the dielectric tensor under the increase in radius of the metallic core and the thickness of the graphene shell have been analyzed. It has been shown that the variation of the radius of the core has the significantly greater influence on the properties of the polarizability resonances and absorption cross-section than the variation of the number of graphene layers. The reasons of the presence of two maxima of the absorption cross-section for the metal-graphene cylinders which differ in both amplitude and width and located in infrared, violet and near ultraviolet parts of the spectrum and their relation with the surface plasmonic resonances in the metallic core and with the terahertz plasmons of graphene have been found. The factors which have an effect on amplitude and on the shift of the maxima of the absorption cross-section have been found. The reasons of the different width of maxima, which are located in the different spectral intervals, have been determined.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

Reference42 articles.

1. 1. Dmitruk N.L., Goncharenko A.V., Venger E.F. Optics of small particles and composite media. (Kyiv: Naukova Dumka, 2009).

2. 2. Schasfoort R.B.M. Handbook of Surface Plasmon Resonance: Edition 2. (Royal Society of Chemistry, 2017).

3. 3. Korotun A.V., Koval' A.O., Kryuchin A.A., Rubish V.M., Petrov V.V., Titov I.M. Nanophoton technologies. Modern state and prospects. (Uzhgorod: PE Sabov A.M., 2019). [in Ukrainian].

4. 4. Sau T.K., Rogach A.L., Jäckel F., Klar T.A., Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2010. 22(16): 1805.

5. 5. Grigorchuk N.I. Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix. Europhys. Lett. 2012. 97(4): 45001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3