Anisotropic Darcy–Brinkman Magnetic Fluid Convection under the Influence of a Time-Dependent Sinusoidal Magnetic Field

Author:

Balaji C.,Maruthamanikandan S.,Rudresha C.,Vidya Shree V.

Abstract

The impact of the sinusoidal mode of a magnetic field involving time fluctuations on the threshold of the ferromagnetic smart liquid convection in a saturated permeable medium is investigated using the regular perturbation technique. The Darcy–Brinkman model with anisotropic permeability is used to describe the flow through porous media. The thermal anisotropy is implemented in the energy equation. The problem might be useful in thermal engineering applications such as dynamic loudspeakers and computer hard discs and in medical applications like the treatment of tumor cells and the cell separation, to name a few. The regular perturbation technique is based on the minimum amplitude of a magnetic field modulation, and the onset criterion is dealt with in terms of a correction in the critical Rayleigh number and wavenumber. The thermal Rayleigh number correction depends on the magnetic field modulation frequency, magnetic force, anisotropies, porosity, and Prandtl number. At moderate values of the magnetic field modulation frequency, the impact of various physical factors is perceived to be noteworthy. The influences of the magnetic mechanism, Prandtl number, porosity parameter, and Brinkman number are shown to augment the destabilizing effect of the magnetic field modulation for moderate values of the frequency of a modulation. However, the destabilizing effect of the magnetic field modulation is diminished due to an increase in the values of the mechanical anisotropy parameter and thermal anisotropy parameter. The study reveals that the effect of the magnetic field modulation could be exploited to control the convective instability in an anisotropic porous medium saturated by a ferromagnetic fluid.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3