Physical Aspects of 2014 Nobel Prize in Physiology or Medicine: 2. The First Principle and Universality Class for Grid Cells in the Brain

Author:

Chalyi A.V.,Chalyi K.A.,Zaitseva E.V.,Chaika E.N.,Kryvenko I.P.

Abstract

The main purpose of this review article is to use the fluctuation theory of phase transitions for studying the process of the emergence of hexagonal grid cells in the brain (2014 Nobel Prize in Physiology or Medicine). Particular attention is paid to the application of the Feynman’s classification of three stages of the study of natural phenomena for: 1) a brief description of the experimental stage of the discovery of the hexagonal structures of grid cells in human and animal brains; 2) the theoretical stage of research on the hexagon formation in the physical system of Benard cells, as well as the neurophysiological system of grid cells, discovered by Edward Mozer and May-Britt Mozer; 3) the most important stage, which allows one to formulate the first principle of the emergence of grid cells in the brain and, generally speaking, the first principle for the hexagon formation in different objects of inanimate and living nature. Our original theoretical findings are the following: (a) Polyakov’s conformal invariance hypothesis is violated for a system of grid cells in the brain; (b) the system of grid cells in the brain belongs to the universality class including the 3D Ising model in a magnetic field, as well as a real classical liquid-vapor system;(c) to formulate the first principle for a reliable theoretical justification of the emergence of hexagonal grid cells in the brain, it is necessary to use the fluctuating part of Gibbs thermodynamic potential (the Ginzburg–Landau Hamiltonian) for a system with chemical (biochemical) reactions.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3