Plasmon Resonance Properties of Au, Cu and Ag Multi-layered Structures with P(VDF-TrFE)

Author:

Yampolskyi A.L.,Makarenko O.V.,Zaporoshchenko D.V.

Abstract

The theoretical modeling of the optical response of layered metal-polymer structures, which can be employed as plasmonic sensors, is carried out. The calculation of their linearly polarized light reflection is performed with the use of the well-known matrix method, which describes the electromagnetic radiation propagation through a sequence of homogeneous flat-parallel media layers. In this way, the attenuated total reflection curves of the structures containing metal films (Au, Cu, or Ag) and a polymer dielectric are obtained and analyzed. A new sensor is proposed, which will utilize the ferroelectric P(VDF-TrFE) copolymer separating metal films. This might be a perspective idea for the creation of tunable plasmonic sensors. The dependencies of the angular position of a surface plasmon resonance versus the thicknesses of structure’s layers, as well as versus the refractive index of the medium contacting to the free surface of a sensor, are considered. This makes it possible to carry out the approximate search for optimal constructive parameters of a sensor, namely, the thicknesses of metal and polymer layers, and to make conclusion about its resulting sensitivity and working range. It is found that the sensors based on a single metal film and a couple of such films separated by a polymer differ 1 ... 1.3 times in the sensitivity (single metal film demonstrates a more rapid resonant angle shift with analyte refractive index variation). It is established that the employment of Au, Cu, or Ag gives no significant changes in the sensitivity of a two-metal-layer sensor with a polymer, but the widest refractive index registration range may be expected for a Cu-based sensor.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3