Marine Actinobacteria – Producers of Enzymes with α-L-Rhamnosidase

Author:

Varbanets L.D., ,Gudzenko O.V.,Ivanytsia V.A., ,

Abstract

In recent years researchers have attracted their attention to such glycosidases as α-L-rhamnosidase (α-L-rhamnoside-rhamnohydrolase – EC 3.2.1.40). The substrates of their action are widespread in the plant world glycosides such as naringin, quercetrin, hesperidin, neohesperidin, and rutin, from which α-L-rhamnosidases cleave the terminal unreduced L-rhamnose residues. This specificity of α-L-rhamnosidases can be used in various industries: food – to improve the quality of drinks (reducing bitterness in citrus juices, enhancing the aroma of wines), as well as production of food additives; in the pharmaceutical industry – to improve the biological properties of bioflavonoids, in particular anti-inflammatory. A number of them are characterized by cardio- and radioprotective effects, have antioxidant, cytotoxic, antibacterial, antisclerotic properties, and are used in the complex treatment of coronary heart disease, including angina pectoris. The use of α-L-rhamnosidases in the chemical industry is associated with a reduction in the cost of rhamnose production as well as various plant glycosides and rutinosides. In the literature available to us, no data were found on the producers of α-L-rhamnosidases among the representatives of actinobacteria, which are known to synthesize a wide range of biologically active compounds, including antibiotics and enzymes. Purpose. To study the ability of actinobacteria isolated from water and bottom sediments of the Black Sea, to produce a-L-rhamnosidase, and also to study the properties of the most active producer. Methods. Glycosidase activity was determined by the Romero and Davis methods, protein – by the Lowry method. Results. The study of 12 glycosidase activities in 10 strains of actinobacteria isolated from bottom sediments of the Black Sea indicated that 6 investigated strains showed the ability to synthesize an enzyme with a-L-rhamnosidase and b-D-glucosidase activity. Studies have shown that the highest α-L-rhamnosidase activity (0.14 U/mg protein) was manifested by Acty 5 isolate with an optimum pH of 7.0 and a temperature optimum of 38°C. The enzyme preparation showed substrate specificity both for natural (rutin, naringin, neohesperidin) and synthetic (p-nitrophenyl derivatives of L-rhamnose and D-glucose) substrates. Conclusions. Promising Acty 5 isolate with high a-L-rhamnosidase and low b-Dglucosidase activity was found among marine actinobacteria. Bacteria with two enzymes activity expand the possibilities of their practical use.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Medicine

Reference12 articles.

1. Gudzenko OV, Varbanets LD. Microbial α-Lrhamnosidases: producers, properties, practical usage. Biotechnologia. 2012; 5(6):9-26.

2. Manzanares P., Valles S., Ramon D., Orejas M. α-L-rhamnosidase: old and new insights. Industrial Enzymes: Springer; 2007. p. 117-140.

3. Updates on naringinase: structural and biotechnological aspects;Puri;Appl Microb and Biotechnol,2012

4. α-L-Rhamnosidase: A review;Yadav;Process Biochemistry,2010

5. Varbanets LD, Borzova NV. [Glycosidases of microorganisms and research methods]. Kyiv: Nauk. Dumka; 2010 . Ukrainian.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3