Evaluation of Non-Conventional Yeasts Isolated from Rotten Wood for Hydrolytic Activities and Xylose Fermentation

Author:

Ianieva O.D., ,Fomina M.O.,Babich T.V.,Dudka G.P.,Pidgorskyi V.S., , , ,

Abstract

Hydrolysis of lignocellulose to fermentable sugars and their subsequent conversion to ethanol remain great challenges in the biofuel industry. Rotten wood is first colonized by bacteria and molds that possess strong hydrolases. Yeasts are also an important group of microorganisms that may participate in wood hydrolysis. Decaying wood could provide a rich natural reservoir of yeasts possessing promising hydrolytic activities, including xylanases, cellulases, β-glucosidases, or abilities essential for the fermentation of pentose sugars derived from lignocellulose degradation, especially xylose. Therefore, the aim of this work was to screen yeasts isolated from rotten wood samples for the production of hydrolytic enzymes directed at lignocellulose components and the ability to ferment xylose, L-arabinose, and cellobiose. Methods. Yeast strains were isolated from 22 samples of rotten wood and identified by phenotypic characteristics according to Kurtzman et al. Hydrolytic properties and the ability of the isolated strains to ferment xylose, L-arabinose, and cellobiose were determined using conventional methods. Results. 30 strains of yeasts and yeast-like micromycetes were isolated from 22 samples of rotten wood in the Holosiivskyi Forest, Kyiv. Based on phenotypic properties, most of the isolated yeasts belonged to ascomycetous yeasts and were represented by the following genera: Candida (8 strains), Debaryomyces (5 strains), Kluyveromyces (5 strains), Pichia (5 strains), Scheffersomyces (2 strains), Lachancea, Hanseniaspora, Saccharomyces, and Geotrichum/Galactomyces. A strain of yeast-like non-photosynthetic alga Prototheca sp. was also detected. Most of the isolated microfungi (66.6% isolates) exhibited extracellular β-glucosidase activity, two Candida tropicalis strains possessed weak pectinase and xylanase activity. None of the isolates demonstrated extracellular cellulase activity. Two yeast strains preliminarily identified as Scheffersomyces stipitis were able to ferment xylose at a concentration of 20—100 g/L over a wide temperature range up to 37°C. Acetic acid at 0.25—1% (v/v) concentration resulted in the complete inhibition of xylose fermentation. Ethanol production from xylose up to 6 g/L was observed under the microaerobic fermentation conditions for 24 hr at the substrate concentration 40 g/L, but the subsequent fermentation resulted in decreasing ethanol concentration presumably due to ethanol re-assimilation. None of the isolated strains was capable of fermenting cellobiose or L-arabinose under the microaerobic conditions. Conclusions. This work provides the characterization of yeast microbiota of rotten wood that was represented predominantly by ascomycetous yeasts. The dominant extracellular hydrolytic activity of the isolates was β-glucosidase. This is the first report on the isolation of xylose-fermenting yeasts Scheffersomyces stipitis in Ukraine, which comprised 7% of all the microfungi isolated from rotten wood.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3