α-L-Rhamnosidase Activity of Antarctic Strain of Pseudomonas mandelii U1

Author:

Gudzenko O.V., ,Borzova N.V.,Varbanets L.D., ,

Abstract

In recent years, cold-adapted enzymes are increasingly used in industrial processes such as the food, textile and beverage industries. Moreover, cold-active enzymes are usually thermolabile and can be inactivated with little heat. This is especially important in reactions where it is necessary to inactivate an enzyme after it has completed its function, while maintaining conditions that allow other enzymes involved in the reaction to function. Among these enzymes, glycosidases play an important role, which are used in medical technological processes, the food industry, biotechnology for the purification and processing of raw materials, as well as in many other areas of human activity. Therefore, the aim of this work was to study the ability of the psychrotolerant bacterium Pseudomonas mandelii U1 to produce glycosidases, in particular a-L-rhamnosidases, and also to investigate their physicochemical properties and substrate specificity. Methods. Glycosidase activities were determined by Romero and Davis methods, protein – by Lowry method. Results. The study of enzymatic activities in the dynamics of growth indicates that already on the third day of cultivation in the supernatant of the culture liquid of P. mandelii U1 α-L-rhamnosidase activity (0.09 U/mg protein) was noted. On the fifth day of cultivation, in addition to α-L-rhamnosidase (0.09 U/mg protein), β-D-glucosidase (0.09 U/mg protein) and α-D-glucosidase (0.09 U/mg protein) activities were identified. On the seventh and ninth days of cultivation, the spectrum of glycosidase activities was wider, except for α-L-rhamnosidase (0.2 and 0.16 U/mg protein, respectively), β-D-glucosidase (0.02 and 0.05 U/mg protein, respectively) and α-D-glucosidase (0.04 and 0.08 U/mg of protein, respectively), α-D-mannosidase (0.025 and 0.025 U/mg protein, respectively), α-D-fucosidase (0.025 and 0.05 U/mg protein, respectively), N-acetyl-β-D-glucosaminidase (0.025 and 0.025 U/mg protein, respectively) and N-acetyl-β-D-galactosaminidase (0.025 and 0.025 U/mg protein, respectively). Since among the studied glycosidase activities, α-L-rhamnosidase was the highest, subsequent studies were aimed at investigating its properties. It was shown that P. mandelii U1 α-L-rhamnosidase has the pH optimum of action at 5.0, and the temperature optimum − at 4°C. Conclusions. The temperature optimum of P. mandelii U1 α-L-rhamnosidase preparation isolated from moss in Antarctica, Galindez Island, is 4°C, the optimum pH is 5.0, the enzyme is able to hydrolyze as synthetic substrates p-nitrophenyl-α-L-rhamnopyranoside, p-nitrophenyl-β-D-glucopyranoside, p-nitrophenyl-α-D-glucopyranoside, p-nitrophenyl-α-D-mannopyranoside, and natural substrates − naringin, neohesperidin and rutin, which suggests the possibility of its use in the future in food technologies, in particular in food processing and waste degradation at low temperatures.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3