Anti-TMV Activities of Pantoea agglomerans Lipopolysaccharides in vitro

Author:

Bulyhina T.V., ,Kyrychenko A.M.,Kharchuk M.S.,Varbanets L.D., , ,

Abstract

Today there are no antiviral drugs of chemical nature that can completely cure virus-infected plants. The fact that their effect is limited to minimizing the pathogenic effect of viruses motivates many researchers to look for alternatives. In recent years it has been shown that lipopolysaccharides (LPS) of some bacteria, in particular representatives of the Pseudomonas genus were active against Tobacco mosaic virus (TMV). Therefore, we were interested in the additional study of LPS of phytopathogenic bacteria Pantoea agglomerans as a possible drug acting as antiviral agent. The aim of current study was to evaluate the antiviral activities of LPS obtained from phytopathogenic bacteria P. agglomerans against TMV in vitro. Methods. The antiviral activity of LPS preparations was investigated in vitro and assessed according to the inhibition percentage towards the number of local lesions in Datura stramonium leaves. P. agglomerans LPS was isolated from dry bacterial mass by phenol-water method. LPS mild acid degradation allowed to separate O-specific polysaccharide (OPS) and lipid A, which structures were identified by us earlier. The analysis of TMV and LPS interactions was carried out using a JEM 1400 transmission electron microscope (Jeol, Japan) at an accelerating voltage of 80 kV. Results. The most active were LPS preparations from P. agglomerans P324 and 8488. In vitro inhibitory efficacies of TMV infection by these LPS preparations was 59 and 60% respectively. LPS preparations of P. agglomerans 7969, 7604 and 9637, on the contrary, were inactive. Comparative analysis of the antiviral activity of LPS structural components of two P. agglomerans P324 and 7604 strains showed that the greatest inhibitory effect on the infectivity of TMV was exhibited by P. agglomerans P324 lipid A, the antiviral activity of which practically did not differ from the activity of the LPS molecule (it was lower by 7%). At the same time, the inhibitory effect of P. agglomerans 7604 core oligosaccharide (OG-core) against TMV was slightly higher compared to the effect of the whole LPS molecule. It can be assumed that the OG-core stimulated the defense mechanisms of plants and prevented the development of viral infection. Electron microscopic dates have shown that P. agglomerans P324 LPS at the concentration of 1 mg/ml influenced on freely located virions in the control causing “sticking” thus forming dense clusters, complexes or “bundles” of the virus. The individual structural components of P. agglomerans P324 LPS (lipid A and OG-core) did not have the same effect as a whole molecule. Conclusions. The study of the antiviral activity of LPS in the model system TMV – Datura stramonium L. plants showed that the most active were LPS preparations of only two strains of P. agglomerans (P324 and 8488) while the other seven strains were inactive. Individual structural components: lipid A from P. agglomerans P324 and OG-core from P. agglomerans 7604 decreased the infectivity of TMV by 7 and 15% higher than the initial LPS molecule. According to electron microscopy data the virions sticked together forming the dense clusters in case of the direct LPS-virus contacting in vitro whereas in the control it was observed just a single free virus particles. A more detailed study of the effect of individual structural components will help to understand the regularities of the LPS structure effect on TMV infectivity.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Medicine

Reference26 articles.

1. Antiviral chemicals for plant disease control;Hansen;Critical Reviews in Plant Sciences,1989

2. Design synthesis, antiviral activity, and SARs of 14-aminophenanthroindolizidines;Wang;J Agric Food Chem,2012

3. D and E rings may not be indispensable for antofine: discovery of phenanthrene and alkylaminechain containing antofine derivatives as novel antiviral agents against tobacco mosaic virus (TMV) based on interaction of antofine and TMV RNA;Wang;J Agric Food Chem,2014

4. Yucheng Yao, Xueshun Yu, Zhide Yu. Plant antiviral agent, preparation method and application thereof . WO 2007/1090014 AO 1N65/08.

5. Shuster G, Kluge Z, Kovalenko AG. [Sredstvo borby s virusami rasteniy]. Patent RF N 2036583 AO 1N 63/00. Russian.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3