Viability and Colony Morphology Variation of Rhodococcus rhodochrous CNMN-Ac-05 in the Presence of Magnetite Nanoparticles

Author:

Postolachi O., ,Rastimesina I.,Josan V.,Gutul T., , ,

Abstract

In recent decades the use of nanotechnologies in the remediation of xenobiotic substances has proven its effectiveness, but not its safety. Nanoparticles often accumulate in the remedied environment, having, over time, toxic effects on living organisms. In this context, research on the vital activity of microorganisms and their interaction with nanoparticles is of major importance. Aim of the research was to determine the influence of Fe3O4 nanoparticles, obtained by different ways (laboratory method and synthesis in the reactor) on the viability and colony morphology of Rhodococcus rhodochrous CNMN-Ac-05 strain. Methods. Encapsulated magnetite (Fe3O4) nanoparticles were synthesized by chemical co-precipitation method, using iron(II) sulfate and iron(III) chloride in the presence of poly-N-vinylpyrrolidone, used as a stabilizer. Fe3O4 SR (Synthesis in the Reactor) was produced in the multifunctional reactor VGR-50, at the same conditions. Cell biomass was determined on the spectrophotometer by the optical density at 540 nm,with subsequent recalculation to cell dry weight according to the calibration curve. The cell dry weight was determined by gravimetric method. The morphological features of the rhodococci colonies were described according to the standard microbiological method. Results. It was established that magnetite nanoparticles in concentrations of 1–100 mg/L were not toxic to the R. rhodochrous strain, had a positive effect on the viability of rhodococci by stimulating the growth of biomass, regardless of their concentration and the method of their synthesis. In the presence of Fe3O4 nanoparticles the population dissociated to S1, S2, R1, R2 forms, and S-R type of colonies, while the basic morphological features of R. rhodochrous colonies corresponded to type S1. Conclusions. The optimal concentration of magnetite nanoparticles, which stimulated the growth and development of R. rhodochrous was 25 mg/L for Fe3O4 and 50 mg/L Fe3O4 SR. At all concentration of Fe3O4 nanoparticles the main colony morphotype of the rhodococci was smooth S1-type; the new types of colonies represented only 0.1–0.6% of the population, and the lowest degree of variability corresponded with the highest colony-forming units index.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3