VALIDATION OF REMOTE MEASUREMENT OF RAIN CHARACTERISTICS BY THE METHOD OF DOUBLE FREQUENCY RADAR SENSING

Author:

Linkova А. М., ,Mogyla A. A.,Rudnev H. O.,Kantsedal V. M.,Khomenko S. I., , , ,

Abstract

Subject and Purpose. Th e development of radar methods for measuring liquid-drop precipitation characteristics is of great importance for studying physical processes in the atmosphere and for lots of applied problems to be solved. At the same time, an experimental research of these methods in situ is essential to determine their frames and scope and estimate retrieval errors of the rain parameters. The purpose of the work is to evaluate eff ectiveness of the previously proposed method that is based on the parametrization of the distribution function of drops by size, uses averaged touch-probing data of the three-parameter gamma distribution of the parameters versus the rain intensity, and employs the double-frequency method of precipitation remote sensing. For its validation, the rain intensity results obtained by the radar sensing are compared with the data taken from the ground raingauge. Methods and Methodology. Th e measurement results gained by the proposed method are compared with the measurement results obtained by the standard technique. Results. An experimental study using the previously developed algorithm and with a refi ned double-frequency weather radar MRL-1 has been given to the double-frequency sensing of liquid-drop precipitation. Th e obtained results show that the proposed data processing algorithm for double-frequency sensing of liquid-drop precipitation is good at the rain intensity retrieval and makes it possible to estimate liquid precipitation amounts over long periods of time. Conclusion. Th e rain intensity measured with the use of meteo radar almost completely coincides, both qualitatively and quantitatively, with the data from the ground raingauge. Th e algorithm proposed by the authors for processing double-frequency radar sensing data on liquid-drop precipitation retrieves the rain intensity and, also, evaluates liquid-drop precipitation amounts.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Space and Planetary Science,Physics and Astronomy (miscellaneous),Astronomy and Astrophysics

Reference15 articles.

1. REFERENCES

2. 1. Sulakvelidze, G.L., Abshaev, M.T., 1968. Measurement of precipitation intensity by multi frequency radar. Trudy Vysokogornogo geophisicheskogo instituta, 11, pp. 198-214 (in Russian).

3. 2. Abshaev, M.T., Dadali, Yu.A., 1966. About the possibilities of microstructural studies of clouds and precipitation by radar methods. Trudy Vysokogornogo geophisicheskogo instituta, 5, pp. 71-85 (in Russian).

4. 3. Litvinov, I.V., 1974. Th e structure of atmospheric precipitation. Leningrad: Gidrometeoizdat Publ. (in Russian).

5. 4. Linkova, A.M., 2011. Using microstructural parameters for data processing of double frequency measurements of rain intensity. Radiofi z. Elektron., 2(16)(1), pp. 33-38 (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3