SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND Рart ІІ. Increasing the Resolution of Autodyne Radar by Quasi-Static Correction of the Probe Pulse

Author:

Ermak G., ,Vasilev O.,Varavin A.,Balaban M.,Fateev O.,Zheltov V., , , , ,

Abstract

Subject and Purpose. Proceeding from a mathematical model of the electronically tunable autodyne oscillator (Part І of this paper), essential features of the signal formation / signal processing procedure are considered, as implementable in an autodyne radar that may reveal nonlinearity in its modulation characteristic. The work is aimed at suggesting a digital technique to enable introduction of corrections to the frequency modulation law of the sounding signal and effectuate processing of the data from the close-range autodyne radar (improving its spatial resolution and accuracy of target range measurements). Methods and Methodology. The present analysis of the radiated signal formation and processing of the data from the autodyne radar has been carried out as numerical modeling of spectral, frequency and amplitude characteristics of the radar signals expected, as well as spectral processing of the experimental data from the frequency modulated autodyne radar. Results. An effective law of temporal variations has been suggested for the corrective control voltage of the Gunn diode-based Ka-band autodyne transceiver with a linear law of frequency modulation. The correspondent experimental studies were conducted with an autodyne close-range radar system of Ka-band employing an asymmetric linear frequency modulation with a 500 MHz band of frequency tuning. The use of digital methods for correcting the frequency modulation law has permitted improving the accuracy of target ranging and range resolution up to 0.3 ÷ 0.6 m, which figures correspond to the theoretical limit for the close-range homodyne radar with a 500 MHz tuning band. Conclusion. By linearizing the modulation characteristic of the oscillator and applying digital processing to the autodyne signal in the close-range radar system with a linear frequency modulation law it proves possible to reach ultimately high estimates for the accuracy and resolution of target range measurements. The results obtained can be helpful for developing radar sensors and radiofrequency meters with enhanced parameters and characteristics.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Space and Planetary Science,Physics and Astronomy (miscellaneous),Astronomy and Astrophysics

Reference11 articles.

1. 1. Ermak, G.P., Vasilev, O.S., Varavin, A.V., Balaban, M.V., Fateev, O.V., Zheltov, V.M., 2022. Features of the formation and processing of signals from an autodyne radar with a wide frequency modulation band. Рart. 1. Modeling the operating modes of an autodyne with frequency modulation taking into account the nonlinearity of the modulation characteristic. Radio Phys. Radio Astron., 27(1), pp. 53-63 (in Ukrainian). DOI: https://doi.org/10.15407/rpra22.01.053.

2. 2. Votoropin, S.D., Noskov, V.Y., Smolskiy, S.M., 2008. An analysis of the autodyne effect of oscillators with linear frequency modulation. Russ. Phys. J., 51(6), pp. 610-618. DOI: https://doi.org/10.1007/s11182-008-9083-5.

3. 3. Votoropin, S.D., Noskov, V.Y., Smolskiy, S.M., 2009. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Part 5. Frequency Modulated Autodyne Studies. Uspekhi Sovr. Radioelektr., 3, pp. 3-50 (in Russian).

4. 4. Noskov, V.Ya., Varavin, A.V., Vasiliev, A.S., Ermak, G.P., Zakarlyuk, N.M., Ignatkov, K.A., Smolskiy, S.M., 2016. Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Part 9. Autodyne Radar Applications. Uspekhi Sovr. Radioelektr., 3, pp. 32-86 (in Russian).

5. 5. Komarov, V.M., Plokhikh, A.P., Andreeva, T.M., 1991. Radar height and inclined range meters with continuous frequency modulated radiation. Zarubejnaya radioelektronika, 12, pp. 52-70 (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3