SIGNAL FORMATION AND PROCESSING FEATURES FROM AUTODYNE RADAR WITH A WIDE FREQUENCY MODULATION BAND. (РART 1)

Author:

Ermak G. P., ,Vasilev A.S.,Varavin A.V.,Balaban M. V.,Fateev A. V.,Zheltov V. N., , , , ,

Abstract

Subject and Purpose. In Part 1 of the paper, a mathematical model of an autodyne self-oscillator with frequency tuning by varactor capacitance varying is built and thoroughly analyzed for the features of signal formation in autodyne radar with a wide frequency-modulation bandwidth and a nonlinearity in the modulation characteristic. The aim of the study is to appreciate the action that the nonlinearity of the oscillator modulation characteristic exerts on the spectral characteristics of signals from frequency-modulation autodyne radar. Methods and Methodology. The research method is a mathematical analysis of the operation of an autodyne oscillator with electronic frequency tuning. To examine formation processes of emitted autodyne signals, the spectral, frequency and amplitude characteristics of signals from frequency-modulation autodyne radar are constructed with the use of numerical modeling techniques. Results. Numerical modeling of autodyne response signal spectra has been performed for various distances to the reflecting object and different modulating voltages across the varactor. It has been shown that a nonlinear dependence of the generator frequency on the varactor voltage makes for the broadening of the autodyne response signal spectrum. It has been found that as the object distance increases, the frequency of the autodyne response signal moves towards the higher frequencies, while the nonlinearity makes the spectrum broaden. The obtained calculation results refer to an 8-mm Gunn diode autodyne. Conclusion. The performed research of the spectral characteristics and into the features of signal formation in autodyne transceiver devices with a wide frequency tuning has shown that in order to achieve high resolution figures from autodyne radar, certain methods are needed to be developed for adjusting the laws of frequency modulation and for the processing of response signals from reflecting objects. Such a method and ways to solve these problems will be presented in Part 2 of the work.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Space and Planetary Science,Physics and Astronomy (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3