METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS

Author:

Stanislavsky L.,

Abstract

Subject and Purpose.Methods for computer processing of radio astronomical signals observed with space objects at low frequencies are given. The aim of this paper is to improve the current methods and use their combinations for cleaning records from radio interference of natural and artificial origin in the frequency-time domain, as well as to discuss advantages and disadvantage of the methods. Methods and Methodology.In the study of records obtained with radio astronomical observations there is a common feature of received signals from space sources, which consists in a significant contribution of radio interference. Having sufficient experience on possible types of interference and distortion of signals on the way of their propagation, the efficiency of suggested procedures, clearing radio signal interference in the frequency-time domain by a combination of different approaches in dependence from typical features of signals withinvestigated space objects, is shown. Results. The developed methods of extracting space signals against the background of interference allow one to get unique data on the sources of radio emission in astrophysical phenomena. On the one hand, software tools make it possible to detect very weak events against the background of radio frequency interference. On the other hand, they allow one to measureemission parameters based on the most statistically complete set of events. Conclusions.The results obtained in this work manifest that there is no universal way to overcome any obstacle in the records of radio astronomical observations because of radio interference. In addition, even if the most appropriate method is applied, it often requires pre-adjustment of the corresponding parameters on which the analysis of physical parameters of radio emission in the area of generation depends. But if such a space signal at the radio records is not very spoiled by interference, the use of considered methods can be successful and useful.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Space and Planetary Science,Physics and Astronomy (miscellaneous),Astronomy and Astrophysics

Reference31 articles.

1. 1. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin,A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V.V., Shevchenko, V.A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y., Lytvinenko, O., Shevchuk, N., Zhouk,I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C. and Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11-48. DOI: 10.1007/s10686-016-9498-x

2. 2. Konovalenko, O.O., Zakharenko, V.V., Kalinichenko, M.M., Melnik V. M., Sidorchuk, M. A., Stanislavsky, A. A., Stepkin, S. V. and Ulyanov, O. M., 2019. Decameter Wavelength. Radio Emission оf the Universe. Radio Phys. Radio Astron., 24(1), pp. 3-43 (in Ukrainian). DOI: 10.15407/rpra24.01.003

3. 3. Konovalenko, A.A., 2005. Low-Frequency Radio Astronomy Prospects. Radio Phys. Radio Astron., 10(5), pp. 86-114 (in Russian)

4. 4. Baan, W.A., Fridman, P.A. and Millenaar, R.P., 2004. Radio frequency interference mitigation at the Westerbork synthesis radio telescope: algorithms, Test observations, and System implementation. Astrophys. J., 128, pp. 933-949. DOI: 10.1086/422350.

5. 5. Winkel B., Kerp J. and Stanko, S., 2007. RFI detection by automated feature extraction and statistical analysis. Astron. Nachr., 328(1), pp. 68-79. DOI: 10.1002/asna.200610661

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3