CHARACTERISTIC FEATURES OF VARIATIONS IN HF RADIO WAVE PARAMETERS IN THE IONOSPHERE DURING THE COURSE OF THE SOLAR ECLIPSE OF JUNE 21, 2020 OVER THE PEOPLE’S REPUBLIC OF CHINA

Author:

Chernogor L., ,Garmash K.,Guo Q.,Luo Y.,Rozumenko V.,Zheng Y., , , , ,

Abstract

Subject and Purpose.The study of the effect that each new Solar eclipse (SE) has on radio wave characteristics is an actual scientific and technical issue. The purpose of the present work is to analyze the variations in Doppler spectra (DS), Doppler shift of frequency (DSF), and in the reflected wave amplitude (RWA) that were observed during the SE of June 21, 2020 over the People’s Republic of China. Methods and Methodology.The observations of HF radio wave characteristics were made using the Harbin Engineering University multi-frequency multipath coherent radio system. The temporal variations in DS, DSF of the main ray and RWA are analyzed further. The variations in the Doppler frequency shift (DSF) were subjected to a systematic spectral analysis that involved joint application of the windowed Fourier transform, adaptive Fourier decomposition, and the Morlet mother-function-based wavelet transformation. Results. The SE was accompanied by DS diffuseness resulting from an increase in the number of rays. The DSF temporal variations were observed to be bi-polar and asymmetrical, with extreme DSF magnitudes varying from –11 to –40 mHz and from 22 to 56 mHz. The duration of processes with negative DSF values varied from 50 to 80 min, and the duration of processes with positive DSF changed from 30 to 80 min. The multi-hop propagation (from two to five hops) took place along all propagation paths, with a 360 to 560-km one-hop range. The 4–5-min period quasi-periodic DSF variations showed 20–50 mHz amplitude, and the 8–18-min period variations exhibited 40–100 mHz amplitude. The relative amplitudes of the 4–5 min period quasi-periodic variations in the electron density were observed to be in the 0.3–6.2% range, and the amplitudes of the 8–18 min period variations were found to be in the 1.1–21.7% range. A decrease in the electron density along different propagation paths was observed to vary from –(12–16)% to –(20–26)%.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Electrical and Electronic Engineering,Space and Planetary Science,Physics and Astronomy (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3