Interpolation rational integral fraction of nth order on a continuum set of nodes

Author:

Demkiv Ihor1,Baranetskyi Yaroslav1,Berehova Halyna1

Affiliation:

1. Lviv Polytechnic National University

Abstract

The paper constructs and investigates an integral rational interpolant of the nth order on a continuum set of nodes, which is the ratio of a functional polynomial of the first degree to a functional polynomial of the (n-1)th degree. Subintegral kernels are determined from the corresponding continuum conditions. Additionally, we obtain an integral equation to determine the kernel of the numerator integral. This integral equation, using elementary transformations, is reduced to the standard form of the integral Volterra equation of the second kind. Substituting the obtained solution into expressions for the rest of the kernels, we obtain expressions for all kernels included in the integral rational interpolant. Then, in order for a rational functional of the nth order to be interpolation on continuous nodes, it is sufficient for this functional to satisfy the substitution rule. Note that the resulting interpolant preserves any rational functional of the obtained form.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3