О числе характеров Гейзенберга для конечных групп

Author:

Золфи А.1,Zolfi Aliye1,Ашрафи Али Реза1,Ashrafi Ali Reza1

Affiliation:

1. University of Kashan

Abstract

Неприводимый характер $\chi$ конечной группы $G$ называется характером Гейзенберга, если $\ker \chi \supseteq [G, [G, G]]$. В статье доказано, что группа $G$ имеет в точности $r$, $r \leq 3$, характеров Гейзенберга тогда и только тогда, когда $|{G}/{G'}|=r$. Если $G$ имеет в точности четыре характера Гейзенберга, то $|{G}/{G'}|=4$, но обратное в общем случае неверно. Наконец, доказано, что если $G$ имеет в точности пять характеров Гейзенберга, то $|{G}/{G'}|=5$ или $|{G}/{G'}|=4$, и ровно один характер Гейзенберга группы $G$ имеет степень $2$.

Funder

University of Kashan

Publisher

Russian Institute for Scientific and Technical Information - VINITI RAS

Reference11 articles.

1. The representation theory of the Heisenberg group and beyond;Brodlie A.

2. On the Ordinary Irreducible Characters of the Heisenberg Group and a Similar Special Group

3. On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups;Darafsheh M. R. and Poursalavati N. S.;SUT J. Math.,2001

4. A note on Freiman models in Heisenberg groups

5. Symmetry classes of tensors associated with the semi-dihedral groups SD8n

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3