Analysis of the development of autogenous shrinkage of CEM I 42.5R and CEM III/A 42.5N cement pastes with different water to cement ratios

Author:

Zieliński Adam1ORCID,Kapeluszna Ewa2ORCID

Affiliation:

1. West Pomeranian University of Technology in Szczecin

2. AGH University of Science and Technology

Abstract

In concrete technology, cements with a high content of Portland clinker are increasingly being replaced by blended binders with a lower carbon footprint. Such binders include blastfurnace cements, which are successfully used in concretes designed for large-scale elements, self-compacting concretes, as well as for the precast concrete industry. Blast furnace cements exhibit lower strength gain relative to Portland cements and a lower heat of hydration. Composites that incorporate them are significantly more resistant to the occurrence of thermal stresses at the early stages of curing of concrete. This paper provides a comparative study of the development of autogenous shrinkage of cement pastes made from CEM I 42.5R and CEM III/A 42.5N with a variable w/c ratio using the dilatometric method on a proprietary instrument covered by the patent PL241667. Furthermore, tests on consistency, setting times and compressive strength were performed after 2, 7 and 28 days of curing. From the analyses carried out, it was found that cement pastes containing blast furnace cement show greater autogenous shrinkage over a period of 28 days compared to pastes containing Portland cement. The pozzolanic reaction of granulated blast furnace slag contributes to the increase in recorded autogenous shrinkage. An increase in the water-cement ratio has an impact on the decreased strength gain, and the value of autogenous shrinkage. The research results indicate the need to take autogenous shrinkage into account when designing high-performance concretes containing blast furnace cement due to the increased susceptibility to shrinkage microcracks and for the durability of the material.

Publisher

Fundacja Cement Wapno Beton

Subject

General Materials Science,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3