Forecasting Wind Power Generation Using Artificial Neural Network

Author:

TOKMAK Ayhan1ORCID,ATALAY İlyas1ORCID,YELGEL Övgü Ceyda2ORCID

Affiliation:

1. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

2. RECEP TAYYIP ERDOGAN UNIVERSITY

Abstract

Today, among renewable energy sources, wind energy is used effectively as a clean and sustainable energy source in electricity generation. The uncertain nature of renewable energy sources and the smart ability of the neural network approach to process complex time series inputs have allowed the use of artificial neural network (ANN) methods in the prediction of renewable energy generation. In this study, the speed and power of wind turbines and electricity generation were estimated from wind speed data using artificial neural networks. In our calculations, the real wind speed data were used in the test phase, and the speed-power data of six different types of wind turbines were used in the training phase. It has been shown that the predictions made by our ANN model from the regression curves of the training, validation, and test data obtained are quite successful and reliable. According to our results, it has been understood that the wind potential of our selected region is good enough and that the electrical energy need for this region can be met from wind energy by using the appropriate wind turbine type, so it is quite appropriate to invest in wind energy.

Publisher

International Journal of Pure and Applied Sciences

Subject

Organic Chemistry,Biochemistry

Reference38 articles.

1. Abhishek, K., Singha, M. P., Ghosh, S. and Anand, A. (2012). “Weather forecasting model using Artificial Neural Network”. Procedia Technology, 4, 311 – 318.

2. Altunbey, F. And Alataş, B. (2015). Sosyal ağ analizi için sosyal tabanlı yapay zekâ optimizasyon algoritmalarının incelenmesi. International Journal of Pure and Applied Sciences,33-40

3. Arslan, F. and Uzun, A. (2017). “Yenilenebilir enerji yatırımlarının sosyal kabul boyutu". Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (51), 95-116.

4. Badri, A., Ameli, Z. and Birjandi A. M. (2012). “Application of artificial neural networks and fuzzy logic methods for short term load forecasting”. Energy Procedia, 14, 1883-1888.

5. Bağcı, E. (2019). Türkiye’de Yenilenebilir Enerji Potansiyeli, Üretimi, Tüketimi ve Cari İşlemler Dengesi İlişkisi. Research Studies Anatolia Journal, 2(4): 101-117.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Yapay Sinir Ağları ve Uyarlanabilir Sinirsel Bulanık Çıkarım Sistemi ile Hava Tahmini;International Journal of Pure and Applied Sciences;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3