Numerical analysis of the thin film solar cell modelled based on In doped CdS semiconductor

Author:

YİĞİT GEZGİN Serap1ORCID,BATURAY Şilan2ORCID,KILIÇ Hamdi Şükür3ORCID

Affiliation:

1. SELCUK UNIVERSITY

2. DİCLE ÜNİVERSİTESİ

3. Selçuk Üniversitesi

Abstract

In this study, pure and 1%, 2% and %3 In-doped CdS thin films were produced by spray pyrolysis method. CdS is an n-type (II-VI group) semiconductor material and used as a buffer layer in solar cells. By doping In into CdS thin film, it was investigated how optical and crystalline behavior of thin film are changed. Using Moss and Herve&Vandamme and Ravindra relations, refractive indices and dielectric coefficients were investigated depending on the band gap of the obtained CdS sample. It has been observed that In element decreases the band gap of CdS thin film, improved its crystal structure and reduced its roughness. Therefore, 3% In doped CdS has gained a more ideal feature for use as an n-type semiconductor in solar cells. CIGS/In doped CdS solar cell was modelled and analysed by SCAPS-1D simulation program by using the physical parameters of the semiconductor layers that make up solar cells as imputs of program. Photovoltaic parameters of solar cell based on donor defect density, the neutral interface defect density and Auger electron/hole capture coefficient which were calculated by using In %3 doped CdS thin film, which has the most ideal n-type semiconductor properties.

Publisher

International Journal of Pure and Applied Sciences

Subject

Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3