Bulanık Anahtarlama Algoritması ile DTC Kontrollü Asenkron Makine için İyileştirilmiş Tork ve Hız Performansları

Author:

GÖREL Göksu1ORCID,HİLOUAN MOHAMED Wahib2ORCID

Affiliation:

1. ÇANKIRI KARATEKİN ÜNİVERSİTESİ

2. ÇANKIRI KARATEKİN ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

Abstract

Direct Torque Control (DTC) is a vector control method based on the control of the stator flux vector in the desired direction. The control of the stator flux vector is achieved by direct selection of the optimum inverter output voltage vectors. The limit values of the trajectory determined in the rotation of the stator flux vector are determined using hysteresis controllers. In this study, performance analysis of two different control methods for reducing speed and torque oscillations of a three-phase asynchronous motor controlled by direct torque control are presented. In Matlab/Simulink based simulation studies, performance analyses were made for different speed and torque references of the motor, and both the transient and steady state speed and torque changes were presented comparatively. When the obtained results are examined, it is seen that the performance of the new fuzzy-based controller, which is offered instead of the Proportional Integral Derivative (PID) controller used in traditional control, significantly decreases in the specific conditions of motor speed and torque oscillations. However, considering the control structure of the direct torque controller, the simple and plain control structure has been preserved. According to the results obtained, it has been shown that the Fuzzy Logic (FL) controller gives a better result than the PID controller at t=4.5 seconds.

Publisher

International Journal of Pure and Applied Sciences

Subject

Organic Chemistry,Biochemistry

Reference22 articles.

1. Abdesselem, C. 2008. Commande directe du couple du moteur asynchrone-apport de la logique floue. Thèse de maitrise, Université de Batna, 105 pages, Algerie.

2. Abdullah, A. N., and Ali, M. H. 2020. Direct torque control of IM using PID controller. International Journal of Electrical and Computer Engineering, 10(1), 617.

3. Aggarwal, A., Rai, J. N., and Kandpal, M. 2015. Comparative Study of Speed Control of Induction Motor Using PI and Fuzzy Logic Controller. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 10(2), 43-52.

4. Bevrani, H., and Daneshmand, P. R. 2011. Fuzzy logic-based load-frequency control concerning high penetration of wind turbines. IEEE systems journal, 6(1), 173-180.

5. Brown, D. W., Abbas, M. and Vachtsevanos, G. J. 2011. Turn-off time as an early indicator of insulated gate bipolar transistor latch-up. IEEE Transactions on Power Electronics, 27(2), 479-489.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3