Kuvars Çekirdekli Fiberlerde Cherenkov Fotonlarının Üretimi ve İletimi Üzerine Geant4 Simülasyon Çalışması

Author:

AYDİLEK Orhan1ORCID,ÖZKORUCUKLU Suat2ORCID,ÇERÇİ Salim3ORCID,SUNAR ÇERÇİ Deniz3ORCID

Affiliation:

1. ERZINCAN BINALI YILDIRIM UNIVERSITY

2. ISTANBUL UNIVERSITY, FACULTY OF SCIENCE

3. ADIYAMAN UNIVERSITY, FACULTY OF ARTS AND SCIENCES

Abstract

In today's world, quartz-core fibers are extensively used in scientific studies due to their high radiation resistance. Thanks to the quartz core's ability to generate Cherenkov photons and propagate these photons, as well as those entering the fiber from outside, it is frequently studied in the context of high-energy and nuclear physics for detector designs. In this paper, a detailed simulation was developed using the Geant4 simulation application, focusing on the photon production and propagation capabilities of quartz-core fibers. Molex's recently developed FBP (FBP600660710) broadband quartz-core fibers were integrated in the simulation environment. The production and propagation of Cherenkov photons were tested by having a charged particle pass through a specific impact point and angle on a quartz-core fiber. Based on the obtained data, reflectors were integrated onto the open end surface of the fiber to reduce photon losses, and tests were conducted again. The effects of fiber length on the photon-carrying capacity of the fiber were also tested.

Publisher

International Journal of Pure and Applied Sciences

Subject

Organic Chemistry,Biochemistry

Reference18 articles.

1. Agostinelli, S. ve ark. (2003). GEANT4–a simulation toolkit. Nucl. Instrum. Meth. A, 506, 250–303.

2. Bahaa, E. A. S. veMalvin, C. T. (1991). Fundamentals of photonics, Fiber optics, 272–309.

3. Béjar Alonso, I., Brüning, O., Fessia, P. ve Lamont, M. (2020). High-luminosity large hadron collider (HL-LHC) technical design report. CERN Yellow Reports: Monographs. CERN-2020-010, 378.

4. Cankocak, K., Bakırcı, N.M., Cerci, S. ve ark. (2008). Radiation-hardness measurements of high OH- content quartz fibres irradiated with 24 GeV protons up to 1.25 Grad. Nuclear Instruments and Methods in Physics Research, 585, 1-2.

5. Chen, W., Hu, L., Zhong, G. ve ark. (2022). Optimization study and design of scintillating fiber detector for D-T neutron measurements on EAST with Geant4. Nuclear Science and Techniques, 33, 139.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3