Çevrimiçi Sosyal Ağlarda Makine Öğrenmesi Tabanlı Aldatma Tespit Sistemi

Author:

BİNGOL Harun1,ALATAS Bilal2

Affiliation:

1. MALATYA TURGUT ÖZAL ÜNİVERSİTESİ

2. FIRAT ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

Abstract

The rapid dissemination of Internet technologies makes it easier for people to live in terms of access to information. However, in addition to these positive aspects of the internet, negative effects cannot be ignored. The most important of these is to deceive people who have access to information whose reliability is controversial through social media. Deception, in general, aims to direct the thoughts of the people on a particular subject and create a social perception for a specific purpose. The detection of this phenomenon is becoming more and more important due to the enormous increase in the number of people using social networks. Although some researchers have recently proposed techniques for solving the problem of deception detection, there is a need to design and use high-performance systems in terms of different evaluation metrics. In this study, the problem of deception detection in online social networks is modeled as a classification problem and a methodology that detects misleading contents in social networks using text mining and machine learning algorithms is proposed. In this method, since the content is text-based, text mining processes are performed and unstructured data sets are converted to structured data sets. Then supervised machine learning algorithms are adapted and applied to the structured data sets. In this paper, real public data sets are used and Support Vector Machine, k-Nearest Neighbor (k-NN), Naive Bayes, Random Forest, Decision Trees, Gradient Boosted Trees, and Logistic Regression algorithms are compared in terms of many different metrics.

Publisher

International Journal of Pure and Applied Sciences

Subject

Industrial and Manufacturing Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3