Using Local Features in Face Recognition Systems

Author:

Aydin Yildiz1,Akar Funda1

Affiliation:

1. Erzincan University

Abstract

Among the many applications in the field of computer vision, face recognition systems; is a subject that has been studied extensively and has been working for a long time. In general, the success of facial recognition systems, which consist of feature extraction and classifier steps, depends not only on the classifier but also on the features used. In a face recognition system, the feature selection is to obtain distinctive features for recognition of different facial images of interest. For this purpose, SIFT, SURF and SIFT + SURF features, which are unchanging features to scaling and affine transformations, are used in this study. In addition, to be able to compare with these local features, the HOG feature which is a global feature, also has been added to the study. Classification was performed using support vector machine. Experimental results show that local features are more successful than the global feature HOG.

Publisher

Islerya Medikal ve Bilisim Teknolojileri

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3