Metaheuristics Based Clustering Algorithms on Document Clustering

Author:

Onan Aytug1

Affiliation:

1. Manisa Celal Bayar University

Abstract

Cluster analysis is an important exploratory data analysis technique which divides data into groups based on their similarity. Document clustering is the process of employing clustering algorithms on textual data so that text documents can be retrieved, organized, navigated and summarized in an efficient way. Document clustering can be utilized in the organization, summarization and classification of text documents. Metaheuristic algorithms have been successfully utilized to deal with complex optimization problems, including cluster analysis. In this paper, we analyze the clustering quality of five metaheuristic clustering algorithms (namely, particle swarm optimization, genetic algorithm, cuckoo search, firefly algorithm and yarasa algorithm) on fifteen text collections in term of F-measure. In the empirical analysis, two conventional clustering algorithms (K-means and bi-secting k-means) are also considered. The experimental analysis indicates that swarm-based clustering algorithms outperform conventional clustering algorithms on text document clustering.

Publisher

Islerya Medikal ve Bilisim Teknolojileri

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3