Autonomous Mobile Robot Navigation in Structured Rough Terrain

Author:

Asar Azad1,Uslu Erkan1,Altuntas Nihal1,Amasyali Mehmet Fatih1,Yavuz Sirma1

Affiliation:

1. Yildiz Technical University

Abstract

Main study areas for robotics research can be given as: mapping, localization, navigation and exploration. Given a robot’s current position, partial map of the environment and a goal position; navigation problem can be defined as optimal path planning and path following. Path planning and path following problem should be handled according to environment being static or dynamic, robot's mobility capabilities, sensors used on the robot and the roughness of the environment. In the study a four wheeled, skid-steering robot with laser range finder and depth sensor is built for Gazebo simulation environment. Also a statically structured labyrinth that consists of 15 degree continuous ramps, 15 degree discontinuous ramps, amorphous holes that robot cannot autonomously escape from if fallen into, walls and discontinuous obstacles that are below the robot laser height. 2D simultaneous localization and mapping, 3D mapping, path planning and path following with respect to the 3D map are implemented on Robot Operating System (ROS). Optimal path planning in rough terrain is accomplished by combining A* heuristic with a function of height difference of the 3D map nodes. Path following is carried out by turning-to and moving-towards actions on each sequential path node pairs. Tests performed on the labyrinth shows that obstacle avoidance, path planning and path following can be carried out successfully with the given implementation.

Publisher

Islerya Medikal ve Bilisim Teknolojileri

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning-Based Image Rendering;Journal of Intelligent Systems with Applications;2022-05-02

2. Autonomous Navigation Algorithm for RoboCup RRL Maneuvering 2 Field;Journal of Intelligent Systems with Applications;2019-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3