Modeling of ECG and SCG Signals Using Predefined Signature and Envelope Sets

Author:

Hardal Emir1,Zaim Gokbay Inci2

Affiliation:

1. Istanbul Cerrahpasa University

2. Istanbul University

Abstract

Seismocardiogram (SCG) is a low-cost monitoring method to collect precordial vibrations of sternum due to heartbeats and evaluate cardiac activity. It is mostly used as an auxiliary measurement to the other monitoring methods; however, it carries significant patterns reflecting current cardiovascular health status of subjects. If it is properly collected within a non-clinical environment, it might be able to present preliminary data to physicians before clinic. SCG signals are morphologically noisy. These signals store excessive amount of data. Extracting significant information corresponding to heartbeat complexes is so important. Previously, the method called compressed sensing (CS) had been applied to weed up the redundant information by taking the advantage of sparsity feature in a study. This compressed sensing is based on storing significant signals below the Nyquist rate which suffice for medical diagnosis. It has been feasible to compress SCG signals with 3:1 compression rate at least while maintaining accurate signal reconstruction. Nevertheless, higher compression rates lead to the formation of artifacts on reconstructed signals. This limits a more aggressive compression to reduce the amount of data. The requirement of a different approach which will allow higher compression rates and lower loss of information arises. The purpose of this study is to obtain more competent results by using a method called predefined signature and envelope vector sets (PSEVS) which has been satisfyingly applied to electrocardiogram (ECG) and speech signals. In the study, simultaneously recorded ECG and SCG signals were modeled with the method called PSEVS. The reconstructed signals were compared to the original signals so as to investigate the efficacy of signature-based modeling methods in constructing medically remarkable biosignals for clinical use. After examining the components of reconstructed signals called frame-scaling coefficient, signature and envelope vectors, it has been seen that the error function values of envelope vectors differ from expected values. We concluded that reconstructed SCG signals were not adequate for medical diagnosis.

Publisher

Islerya Medikal ve Bilisim Teknolojileri

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3