Abstract
Abstract
To give a clue for increasing emission efficiencies of Al
x
Ga1-x
N-based deep ultraviolet light emitters, the origins and influences on carrier concentration and minority carrier lifetime (τminority), which determines the internal quantum efficiency, of midgap recombination centers in c-plane Si-doped Al0.60Ga0.40N epilayers and Al0.68Ga0.32N quantum wells (QWs) grown by metalorganic vapor phase epitaxy were studied by temporally and spatially resolved luminescence measurements, making a correlation with the results of positron annihilation measurement. For the Al0.60Ga0.40N epilayers, τminority decreased as the concentration of cation vacancies (VIII) increased, indicating that VIII, most probably decorated with nitrogen vacancies (VN), VIII(VN)
n
, are major nonradiative recombination centers (NRCs). For heavily Si-doped Al0.60Ga0.40N, a generation of electron-compensating complexes (VIII-SiIII) is suggested. For lightly Si-doping regime, τminority of the QW emission was increased by appropriate Si-doping in the wells, which simultaneously increased the terrace width. The importance of wetting conditions is suggested for decreasing the NRC concentration.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Asahi Glass Foundation
New Energy and Industrial Technology Development Organization
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献