Author:
Teranishi Takashi,Ozaki Ruku,Kondo Shinya,Kishimoto Akira
Abstract
Abstract
The domain configuration contributions to the DC bias characteristics of nanograined BaTiO3 were clarified. Domain boundaries became more ambiguous with decreasing grain size (g.s.), whereas domain patterns partially vanished because of the reduction in BT ferroelectricity, in the g.s. range <1 μm. Additionally, intergranular stress increased with decreasing g.s., resulting in crystal lattice hardening in the vicinity of the domain walls (DWs) and suppression of dipole fluctuations in the DWs. These domain structural variations with the domain size (d.s.) reduced permittivity in the absence of a DC electric field, resulting in improvements in permittivity depressions in an electric field (Δε). Magnesium substitution slightly decreased the d.s. The increase in DW density upon Mg loading implied defect pairs,
Mg
Ti
"
–
V
o
•
•
,
which acted as new DW pinning centers, thereby subdividing the DWs. The Δε notably improved via Mg loading, because a defect pair effectively pins the DWs under the electric field.
Subject
General Physics and Astronomy,General Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献