Extension of the scope of the photoluminescence method after electron irradiation for quantifying low-level carbon in silicon

Author:

Tajima MichioORCID,Samata Shuichi,Nakagawa Satoko,Ishigaki Hiroki,Ishihara Noriyuki

Abstract

Abstract We have extended the applicability of the photoluminescence method after electron irradiation for quantifying low-level C impurities in Si crystals. The intensity ratio of the G-line to the intrinsic emission normalized by the ratio of the reference sample is used as an index of the C concentration. The calibration curves have already been established for Czochralski-grown crystals with resistivity higher than 50 Ω·cm (n-type) and higher than 5 kΩ·cm (p-type). We showed that the method was extendable to the resistivity range down to 30 Ω·cm in n-type samples with the O concentration in the range 1–6 × 1017 cm−3. The extension to float-zone (FZ) crystals was realized by using the theoretical relationship between the C concentration and the G-line intensity ratio normalized by the ratio of the FZ reference sample. Regarding the extension to conductive p-type B-doped samples, the formation of B-related radiation-induced defects was found to be an obstacle.

Funder

Ministry of Economy, Trade and Industry

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3