Abstract
Abstract
We have investigated the characteristics of bottom-gate and top-contact type field effect transistors fabricated with polycrystalline thin films of a liquid-crystalline organic semiconductor, 2-decyl-7-phenyl-benzothienobenzothiophene (Ph-BTBT-10), with a p-type dopant, tetrafluoro-tetracyano-quinodimethane (F4-TCNQ). We found that the contact resistance between the semiconductor and electrode was reduced from 3.0 kΩ cm to 1.2 kΩ cm by contact doping with F4-TCNQ, and to 0.9 kΩcm by subsequent thermal annealing of the films, in which the F4-TCNQ dopant diffused from the surface to the interior of the Ph-BTBT-10 thin film. In addition, we found that contact-doped and thermally annealed devices showed higher mobility and smaller threshold voltage in short-channel devices compared to pristine devices. We conclude that thermal diffusion of dopants to improve FET performance is an important technique.
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献