Statistical metal–insulator transition properties of electric domains in NdNiO3 nanowires

Author:

Yamanaka Takashi,Hattori Azusa N.,Hayashi Keiichiro,Tanaka Hidekazu

Abstract

Abstract Neodymium nickelate, NdNiO3 (NNO), with a perovskite structure shows resistance change of 1–2 orders owing to insulator–metal-transition (IMT) and metal–insulator-transition (MIT) at around 200 K and its IMT/MIT properties are affected by strain effects (Ni–O–Ni angular distribution). Since the resistance changes in the NNO system are considered to be dominated by competing nanoscale electronic phases, the reduction in sample size down to the individual domain scale could realize the direct investigation of single electric domains. In this study, 100 nm wide NNO nanowire structures were produced on NdGaO3(110) and LSAT(100) substrates, and the statistical IMT/MIT properties of electric domains under different strained structures were investigated. The nanowires showed prominent step resistance changes reflecting intrinsic first-order transition properties with different transition temperature distributions. A statistical transition model unveils the quantitative relationship between the IMT properties of the NNO nano-electronic phase and the strain effect due to the Ni–O–Ni angular distribution in NNO.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3