Investigation of the decomposition performances of Cu-EDTA using pulsed streamer discharge

Author:

Tabassum Most Tauhida,Nakagawa YusukeORCID,Tochikubo FumiyoshiORCID

Abstract

Abstract The decomposition of Cu-Ethylenediaminetetraacetic Acid (Cu-EDTA) using a pulsed streamer discharge in contact with liquid is reported under various experimental conditions, and the efficacy of OH radicals is investigated. The change in Cu-EDTA concentration was characterized using high-performance liquid chromatography. H2O2, NO2 , NO3 , and O3 were detected using water inspection test kits and an UV-visual spectrophotometer. The OH yield was estimated using a colorimetric method with disodium terephthalate. The results revealed that approximately 70% of the Cu-EDTA decomposed with an energy efficiency of 15 mmol kWh−1 in the Ar discharge, whereas the decomposition rate and energy efficiency in the air discharge were 80% and 16 mmol kWh−1, respectively, within 60 min of treatment. The decomposition in Ar was primarily driven by the OH generated during discharge, whereas a combined effect of O3 and OH was observed during air discharge. The discharge-generated OH was the dominant species in Cu-EDTA decomposition in this study.

Funder

Tokyo Human Resources Fund for City Diplomacy at TMU

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3