Material identification and imaging of microplastics when dispersed in water using near-infrared light toward combination with a flow cell

Author:

Shima TakayukiORCID,Furukawa HiromitsuORCID,Okamoto YukiORCID,Iwasaki WataruORCID,Ichiki MasaakiORCID

Abstract

Abstract The Earth’s environment and the health of living things are being negatively impacted by the microplastics in the oceans. We have studied a material identification method that could be performed using NIR light when the microplastics are inside water. The method is developed toward combining a flow cell to reduce the processes of drying and manually placing the microplastics in a measurement setup. The correlation coefficient was used to identify the material by comparing the absorbance spectrum with the reference data of polyethylene, polypropylene, polystyrene, and polymethyl methacrylate. The sizes, shapes, and materials of the microplastics were successfully identified.

Funder

Adaptable and Seamless Technology Transfer Program through Target-Driven R and D

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3