Charge transfer and catalytic properties of various PEDOTs as Pt-free counter electrodes for dye-sensitized solar cells

Author:

Kurokawa Yuki,Vats Ajendra Kumar,Kato Takehito,Shafie Suhaidi,Pandey Shyam S.ORCID

Abstract

Abstract Despite the high electrocatalytic activity of Pt and the fact it is a champion catalyst for the counter electrode (CE) of state-of-art dye-sensitized solar cells (DSSCs), its high cost, rarity, and the concern about its possible deterioration by the iodine-based redox electrolyte, has compelled the search for suitable and low-cost catalysts for CEs. To circumvent this issue, efforts were directed to exploring the suitability of various types of poly(3,4-ethylenedioxythiophene)(PEDOT)-based conducting polymers as the most suitable electrocatalysts for low-cost CEs. Amongst various types of PEDOT explored as CEs, micelle directed electropolymerized PEDOT:SDS (:sodium dodecyl sulfate) exhibited not only excellent catalytic activity (>Pt), as confirmed by cyclic voltammetry and electrical impedance spectroscopy investigations, but also fairly good photovoltaic performance exhibiting photoconversion efficiency of 5.8%, which is only slightly lower than the performance shown by Pt-based CE for the DSSCs fabricated under similar experimental conditions. Further improvement for the PEDOT:SDS-based CE surpassing the Pt-based CE is envisioned by morphological control and making their suitable composites with carbon-based nanomaterials.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3