Separation of bias stress degradation between insulator and semiconductor carrier trapping in organic thin-film transistors

Author:

Oshima Kunihiro,Bian Song,Kuribara KazunoriORCID,Sato TakashiORCID

Abstract

Abstract Organic thin-film transistors (OTFTs) are studied intensively for realizing practical applications of flexible or large-area circuits, but rapid degradation of OTFTs due to stress voltage or reaction with water vapor or oxygen in the air limits their lifetime. In order to analyze the cause of rapid bias-stress degradation, we propose a method that separates the cause of threshold voltage (V th) shift into insulator carrier trapping (ICT) and semiconductor carrier trapping components. The experimental results show that the ICT components account for nearly 50% of the total V th shift in n-type OTFTs, while the ICT-induced V th shifts is about 20% of the total V th shift in p-type OTFTs regardless of the insulator materials: SAM or parylene. The experimental results suggest that the short lifetime of the n-type OTFTs with SAM-based insulator is caused by the instability of the SAM-based insulator due to ICT. In addition, the instability of the p-type OTFTs with SAM-based insulator is discussed based on measurement, and as a result, capacitance shift due to ICT may also affect the degradation of highly biased p-type OTFTs.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3