Abstract
Abstract
The electron temperature T
e and density N
e of atmospheric-pressure non-equilibrium dielectric barrier discharge argon (Ar) plasma are measured with optical emission spectroscopy. Continuum emission due to bremsstrahlung is applied to the analysis of the electron temperature and density with the spectrometric system in the visible wavelength range calibrated absolutely. The assumption of the Maxwellian electron energy distribution function (EEDF) results in T
e ≃ 0.29 eV and N
e ≃ 1.1 × 1016 cm−3, whereas the Druyvesteyn EEDF leads to the result T
e ≃ 0.79 eV and N
e ≃ 1.4 × 1014 cm−3. To confirm the validity of these values, several line intensities of the excited states of the Ar atom are observed experimentally and compared with the theoretical population densities calculated by the Ar collisional–radiative (CR) model that includes atomic collisional processes. It is confirmed that the order of the observed excited-state number densities agrees well with that calculated numerically by the CR model with the Druyvesteyn EEDF, while the Maxwellian EEDF gives poor results.
Funder
Japan Society for the Promotion of Science
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献