Design and analysis of gate all around stacked nanosheet-DRAM for future technology node

Author:

Khan Imtiyaz Ahmad,Manhas Sanjeev KumarORCID,Pakala Mahendra,Kumar Arvind

Abstract

Abstract This paper reports a stacked Dynamic random-access transistor (DRAM) memory structure that is based on gate all-around nanosheet access transistor. A TCAD study is done to compare nanosheet DRAM and conventional saddle fin recessed channel access transistor (SRCAT) in terms of DRAM electrical characteristics and its row hammer-induced leakage. The nanosheet DRAM shows superior characteristics in terms of current driving capability, speed, and refresh than SRCAT. The nanosheet DRAM also shows significantly lower hammer-induced failure as compared to SRCAT because the original leakage path from the cell to the neighboring cell gets blocked due to the nanosheet device structure. We also investigate the effect of spacer length on nanosheet DRAM characteristics and show that extended spacer length is favorable for having better DRAM characteristics due to the floating body effect. Our study demonstrates the potential, and advantages of nanosheet DRAM architecture compared to the conventional SRCAT DRAM.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3