Ultrasonic envelope statistical analysis in motion compensated images during temperature change

Author:

Omura MasaakiORCID,Takeuchi MichioORCID,Nagaoka RyoORCID,Hasegawa HideyukiORCID

Abstract

Abstract Motion compensation was applied in the envelope statistical analysis to develop robust thermometry for in vivo situations. Numerical data were reproduced with the temporal change in the scatterer distribution due to thermal expansion and arbitrary translational motions, and experimental phantom data were obtained under heating with the probe motion. Additionally, the case under respiratory motion was evaluated using the data collected from in vivo rat tumor. Ultrasound signals were acquired using a 7.5 MHz linear probe, and their misalignments of envelopes due to the motions were compensated by a block-matching-based motion estimator. The absolute change in the Nakagami shape parameter, Δ m , in each frame was calculated by normalizing with the initial frame to indicate the temperature change. The uncompensated Δ m with physical motions deviated from that without motion, whereas the motion-compensated numerical and experimental data suppressed the rapid or gradual Δ m change and showed the same trend of Δ m without motion.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3