Use of anti-solvent to enhance thermoelectric response of hybrid halide perovskite thin films

Author:

Saini ShrikantORCID,Matsumoto Izuki,Kishishita Sakura,Baranwal Ajay KumarORCID,Yabuki Tomohide,Hayase Shuzi,Miyazaki KojiORCID

Abstract

Abstract Hybrid halide perovskite research has recently been focused on thermoelectric energy harvesting due to the cost-effectiveness of the fabrication approach and to the ultra-low thermal conductivity. To achieve high performance, tuning of the electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows the tuning of these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite (CH3NH3SnI3) thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which result in the enhancement of the value of electrical conductivity. The thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The values of electrical conductivity and the Seebeck coefficient were measured near room temperature. A high value of the power factor (1.55 μW m−1 K−2 at 320 K) was achieved for thin films treated with anti-solvent.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3