Abstract
Abstract
Long-term perfusion culture of lumens constructed using spontaneous vasculogenesis in vitro has attracted attention in elucidating angiogenesis and subsequent remodeling phenomena. A Braille-based integrated microfluidic system for reconfigurable perfusion culture of a spontaneous 3D microvascular network was developed to transition from spontaneous vasculogenesis to long-term lumen perfusion using conventional methods. The combination of Braille microfluidics and the On-chip Incubation system allowed the elimination of the need for CO2 incubators and external tubing and pumps, as well as adjusted the interstitial flow rate and direction following the visual feedback morphology of the lumens easily. Using this device, lumens constructed by human umbilical vein endothelial cells with dynamic interstitial flow conditions were stimulated. Consequently, the lumen structure was maintained over 40 d and exhibited the possibility of long-term maintenance of perfusable capillary network, adjusting the magnitude of interstitial flow, and switching the flow direction.
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献