On-chip long-term perfusable microvascular network culture

Author:

Nakamura MasatakaORCID,Ninomiya Yusuke,Nishikata KotaroORCID,Futai NobuyukiORCID

Abstract

Abstract Long-term perfusion culture of lumens constructed using spontaneous vasculogenesis in vitro has attracted attention in elucidating angiogenesis and subsequent remodeling phenomena. A Braille-based integrated microfluidic system for reconfigurable perfusion culture of a spontaneous 3D microvascular network was developed to transition from spontaneous vasculogenesis to long-term lumen perfusion using conventional methods. The combination of Braille microfluidics and the On-chip Incubation system allowed the elimination of the need for CO2 incubators and external tubing and pumps, as well as adjusted the interstitial flow rate and direction following the visual feedback morphology of the lumens easily. Using this device, lumens constructed by human umbilical vein endothelial cells with dynamic interstitial flow conditions were stimulated. Consequently, the lumen structure was maintained over 40 d and exhibited the possibility of long-term maintenance of perfusable capillary network, adjusting the magnitude of interstitial flow, and switching the flow direction.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3