Linear response theory-based theoretical approach to structural changes in a polymer induced by β-decay of substituted tritium

Author:

Kawanami Ryuta,Fujiwara Susumu,Nakamura Hiroaki,Omata Kazumi

Abstract

Abstract Polymers exposed to tritiated water undergo hydrogen defects caused by isotope substitution and subsequent β-decay of substituted tritium, causing structural changes and loss of function in the biopolymers. Here, based on linear response theory, we predict the structural change of tritium-damaged polyethylene using the equilibrium trajectory of undamaged polyethylene to reduce the computation time of molecular dynamics simulations. Specifically, the ensemble average of the change in a physical quantity, such that it represents a structural change before and after damage, was calculated numerically using the time derivative of the total potential energy difference derived analytically and the physical quantity obtained from the simulation of undamaged polyethylene on the basis of linear response theory. A comparison between theoretical and simulation results revealed that the characteristic oscillation behaviors of the structural response of polyethylene can be predicted, whereas the quantitative prediction of the steady-state values over a long period is difficult.

Funder

Japan Society for the Promotion of Science

National Institute for Fusion Science

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3