Abstract
Abstract
We investigated the impact of various excitonic and photonic losses on the lasing threshold and slope efficiency of organic semiconductor lasers (OSLs) under optical and electrical excitations. The rate equations are solved numerically using the Euler method for an OSL and an organic semiconductor laser diode, including 4,4′-bis[(N-carbazole)styryl]biphenyl (BSB-Cz) as a gain medium. The results showed that the loss mechanisms that affect the exciton and photon densities cause an increase in the laser threshold and a decrease in the slope efficiency. Further, we demonstrated that by using a thermally activated delayed fluorescence (TADF) emitter as a gain medium, the triplet excitons could be harvested by increasing the reverse intersystem crossing rate (k
RISC
), resulting in an appreciable decrease of the laser threshold and an increase of the slope efficiency. Accordingly, the TADF emitters with a fast k
RISC
are expected to significantly reduce the current density required for electrical excitation.
Funder
JSPS Core-to-Core Program
KOALA Tech Inc.
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献