0.36 μW/channel capacitively-coupled chopper instrumentation amplifier in EEG recording wearable devices for compressed sensing framework

Author:

Mii Kenji,Kanemoto Daisuke,Hirose Tetsuya

Abstract

Abstract We evaluated the effectiveness of a low-current-consumption amplifier for a compressed-sensing (CS) framework in wearable electroencephalography (EEG) recording devices. The amplifier uses a capacitively coupled chopper instrumentation amplifier (CCIA) architecture which is often used for low-noise amplifier (LNA) to achieve low consumption and low-noise characteristics. According to measurements of the designed CCIA, the power consumption was 0.36 μW/channel, and the input referred noise (IRN) was 4.47 μVrms. The measured IRN and simulations were used to confirm the effect of CCIA noise on the CS-based EEG measurement framework. The difference in the normalized mean squared error at CR = 4 to the uncompressed conditions could be reduced to 0.008. The findings show that even with the LNA specialized for low power consumption, a slight signal degradation is observed when the compression ratio is increased up to 4 in the CS framework by utilizing the sparsity of EEG in the frequency domain.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3