Design methodology of compact edge vision transformer CiM considering non-volatile memory bit precision and memory error tolerance

Author:

Misawa Naoko,Yamaguchi Ryuhei,Yamada Ayumu,Wang Tao,Matsui ChihiroORCID,Takeuchi KenORCID

Abstract

Abstract This paper proposes a design methodology for a compact edge vision transformer (ViT) Computation-in-Memory (CiM). ViT has attracted much attention for its high inference accuracy. However, to achieve high inference accuracy, the conventional ViT requires fine-tuning many parameters with pre-trained models on large datasets and a large number of matrix multiplications in inference. Thus, to map ViT to non-volatile memory (NVM)-based CiM compactly for edge applications (IoT/Mobile devices) in inference, this paper analyses fine-tuning in training, clipping, and quantization in inference. The proposed compact edge ViT CiM can be optimized by three design methods according to use cases considering the required fine-tuning time, ease of setting memory bit precision, and memory error tolerance of ViT CiM. As a result, in CIFAR-10, the most compact type successfully reduces the total memory size of ViT by 85.8% compared with the conventional ViT. Furthermore, the high accuracy type and high error-tolerant type improve inference accuracy by 4.4% and memory-error tolerance by more than four times compared with convolutional neural networks, respectively.

Publisher

IOP Publishing

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3