Electronic band engineering of Mg2Si by isoelectronic impurity doping: a first-principles study for enhancing thermoelectric properties

Author:

Imai Kiyoka,Ikebuchi Ryohei,Hirayama Naomi,Hamada Noriaki,Imai Yoji

Abstract

Abstract Previous theoretical studies have suggested novel approaches for enhancing the thermoelectric performance of Mg2Si, i.e. electronic band engineering based on tensile strain to enhance the Seebeck coefficient and electrical conductivity simultaneously. To realise this approach, we investigated the doping with isoelectronic impurities (Ca, Sr, and Ba) substituted at Mg sites. We performed variable-cell relaxation calculations for Ca-doped, Sr-doped, and Ba-doped systems using first-principles calculations. The results showed that doping with Ca made the lowest and next-lowest conduction bands approach each other, which is advantageous for enhancing thermoelectric properties. Thermoelectric calculations showed that the distribution of Ca atoms would have a crucial effect on thermoelectric properties. Although Ca doping did not improve the n-type power factor for any structures examined in the present study, the Seebeck coefficient increased for the p-type, especially for a certain structure at 300 and 600 K, resulting in an improved power factor.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3