Growth of phosphide-based type-II stacked quantum dots for III–V/Si photovoltaic applications

Author:

Piedra-Lorenzana José Alberto,Yamane Keisuke,Hori Akihito,Wakahara Akihiro

Abstract

Abstract The necessity for improved renewable energy sources has increased in recent years, particularly solar cells have been continuously improving. This study proposes a type-II quantum dot (QD) structure using InP and GaP-based III–V–N alloys to enhance electron/hole spatial separation for photovoltaic applications. With appropriate size and thickness, InP QD/GaAsPN enables type-II band alignment. Additionally, it has a tunable bandgap of approximately 1.7 eV with strain compensation conditions on a Si substrate, which enables dislocation-free III–V/Si tandem cells. Self-assembled nanostructures of InP were fabricated on GaP, and two types of islands were observed. Growth parameters were investigated to ensure better control over the morphology of islands. Subsequently, the optimized parameters were employed for fabricating a 30-period good quality InP/GaP stacked QD structure without any strain compensation layers. These results may help in designing more efficient GaP-based III–V–N solar cells on Si substrates.

Funder

yashima environment technology

KAKENHI

Tokai Foundation for Technology

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3