Floating zone silicon wafer bonded to Czochralski silicon substrate by surface-activated bonding at room temperature for infrared complementary metal-oxide-semiconductor image sensors

Author:

Koga Yoshihiro,Kurita Kazunari

Abstract

Abstract We propose to use a bonding wafer as an alternative epitaxial wafer with an extra thick epitaxial layer of more than 100 μm thickness to fabricate vertical time-of-flight (TOF) complementary metal-oxide-semiconductor (CMOS) imaging sensors that can detect infrared (IR) radiation of wavelength greater than 1120 nm. This bonding wafer comprises a floating zone (FZ)-grown silicon wafer bonded to a Czochralski (CZ)-grown silicon substrate by room-temperature surface-activated bonding. Because the device-fabricating region is formed by bonding the FZ-grown wafer to the CZ-grown silicon substrate at room temperature, the oxygen concentration in this region is decreased to less than that in an epitaxial wafer. In addition, our bonded wafer can have a strong gettering capability for oxygen and transition metals (nickel, copper, and iron) in the bonding interface. Furthermore, the bonded wafer can inhibit out-diffusion of oxygen or transition metal to the device-fabricating region from the CZ-grown silicon substrate, and the device-fabricating region can have fewer impurities after fabricating the devices in the bonded wafer. Therefore, we consider that this bonded wafer can be fabricated by the simple processes of bonding and grinding (polishing) at room temperature without thermal stress, and this method is effective for decreasing the dark currents and white-spot defects generated owing to the presence of oxygen or transition metal, which are undesirable in advanced TOF-CMOS imaging sensors of a vertical structure.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3